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 1.  INTRODUCTION 
Natural convection (NC) in open cavities has received 

considerable attention because of its importance in 

several thermal engineering problems, for example, in 

the design of electronic devices, solar thermal receivers, 

uncovered flat plate solar collectors having rows of 

vertical strips geothermal reservoirs, etc. During the 

past two decades, several experiments and numerical 

calculations have been presented for describing the 

phenomenon of NC in open cavities. Those studies have 

been focused in the present work to study the effect on 

flow and heat transfer for different Gr, aspect ratios, and 

tilt angles. Le Quere et al. [7] investigated thermally 

driven laminar natural convection in enclosures with 

isothermal sides, one of which facing the opening using 

finite difference. Penot [5] studied a similar problem 

using stream function-vorticity formulation. Chan and 

Tien [2] studied numerically shallow open cavities and 

also made a comparison study using a square cavity in 

an enlarged computational domain. In similar way, 

Mohamad [4] studied inclined SOC, by considering a 

restricted computational domain. Polat and Bilgen [6] 

studied numerically inclined open shallow cavities in 

which the side facing the opening was heated by 

constant heat flux, two adjoining walls were insulated 

and the opening was in contact with a reservoir at 

constant temperature and pressure. The computational 

domain was restricted to the cavity. Angirasa [1] 

showed that the inclusion of the outside domain into the 

computations has a minimal effect on the heat transfer 

results for those cavities where one wall is isothermal 

and other two walls are adiabatic. Goutam saha et. al.[8] 

Studied that a square tilted SOC has an effect on the 

heat transfer results for those cavities where one wall is 

either isothermal heat source or iso-flux heat source and 

other two walls are adiabatic using FEM. As the first 

step toward accurate flow solutions using the adaptive 

meshing technique [3], this paper develops a finite 

element formulation suitable for analysis of steady-state 

NC flow problems. The paper starts from the Navier-

Stokes equations together with the energy equation to 

derive the corresponding finite element equations. The 

computational procedure used in the development of the 

computer program is described. The finite element 

equations derived and then the computer program 

developed are then evaluated by example of natural 

convection in a square open cavity. 
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ABSTRACT   
A numerical analysis of two-dimensional laminar steady-state natural convection in a square tilted open 

cavity (SOC) having partially heated square cylinder has been numerically studied. The opposite wall to 

the aperture is placed at iso-flux heat source q, while the surrounding fluid interacting with the aperture is 

maintained at an ambient temperature T . The other two remaining walls were kept cooled Temperature 

Tc (Top wall) and heated temperature Th (bottom wall). The fluid concerned with different Prandtl 

number (Pr) at 0.72, 1 and 7. The governing mass, momentum and energy equations are expressed in a 

normalized primitive variables formulation. In this paper, the effect of dimensionless number for steady-

state incompressible natural convection flows has been developed. The streamlines and isotherms are 

produced. The heat transfer characteristics is obtained for Grashof numbers (Gr) from 10
3
 to 10

6
 , for an 

inclination angles of the cavity ranges from 0º to 45º and different length ratio (lr) of cylinder. The results 

show that the Nusselt numbers (Nu) increases with the increases of Grashof numbers. Also the average 

Nusselt number (Nuav) changes substantially with the inclination angle of the cavity while thermal 

performance is also sensitive to the boundary condition of the heated wall. 
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2.  PHYSICAL MODEL AND ASSUMPTIONS 
The heat transfer and the fluid flow in a two-

dimensional open square cavity of length L having 

partially heated square cylinder with length ratio (lr) are 

considered, as shown in the schematic diagram of fig.-1. 

The opposite wall to the aperture is placed at iso-flux 

heat source q, while the surrounding fluid interacting 

with the aperture is maintained to an ambient 

temperature T∞. The other two remaining walls were 

kept cooled Temperature Tc (Top wall) and heated 

temperature Th (bottom wall). The fluid is assumed to 

be different prandtl number (Pr = 0.72, 1.0 & 7) and 

Newtonian, and the fluid flow is considered to be 

laminar. The properties of the fluid are assumed to be 

constant. 

 
 
 

 
 
 

 
 

 
 
 

 
 

 

 

Fig 1. Schematic diagram of the square open cavity  

 

3.  MATHEMATICAL MODEL 
Natural convection is governed by the differential 

equations expressing conservation of mass, momentum 

and energy. The present flow is considered steady, 

laminar, incompressible and two-dimensional. The 

viscous dissipation term in the energy equation is 

neglected. The Boussinesq approximation is invoked for 

the fluid properties to relate density changes to 

temperature changes, and to couple in this way the 

temperature field to the flow field. The governing 

equations in non-dimensional form are written as 

follow:                                                                                       
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The above equations were normalized using the 

following dimensionless scales:  
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The Nusselt number (Nu) is one of the important 

dimensionless parameters to be computed for heat 

transfer analysis in natural convection flow. The local 

Nusselt number can be obtained from the temperature 

field by applying Nu =  1/ (0,Y) and the average or 

overall Nusselt number was calculated by integrating 

the temperature gradient over the heated wall as    
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4.  FINITE ELEMENT FORMULATION  
The velocity and thermal energy equations result in a set 

of non-linear coupled equations for which an iterative 

scheme is adopted. To ensure convergence of the 

numerical algorithm the following criteria is applied to 

all dependent variables over the solution domain 
51 10m

ij

m
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where φ represents a dependent variable U, V, P, and T; 

the indexes i, j indicate a grid point; and the index m is 

the current iteration at the grid level. The six node 

triangular element is used in this work for the 

development of the finite element equations. All six 

nodes are associated with velocities as well as 

temperature; only the corner nodes are associated with 

pressure. This means that a lower order polynomial is 

chosen for pressure and which is satisfied through 

continuity equation. The velocity component and the 

temperature distributions and linear interpolation for the 

pressure distribution according to their highest 

derivative orders in the differential Equations as  
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(X,Y) = N     

P(X,Y) = H P  

where α = 1, 2, … …, 6; λ= 1, 2, 3; Nα are the element 

interpolation functions for the velocity components and 

the temperature, and Hλ are the element interpolation 

functions for the pressure.  

To derive the finite element equations, the method of 
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weighted residuals is applied to the continuity Equation. 

the momentum Equations and the energy Equation, we 

get  
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Where dA is the element area, Gauss’s theorem is then 

applied to generate the boundary integral terms 

associated with the surface tractions and heat flux. Then 

Equations become, 
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Here specifying surface tractions (Sx, Sy) along outflow 

boundary S0 and specifying velocity components and 

fluid temperature or heat flux that flows into or out from 

domain along wall boundary Sw. Substituting the 

element velocity component distributions, the 

temperature distribution, and the pressure distribution 

from Equations, the finite element equations can be 

written in the form,  
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where the coefficients in element matrices are in the 

form of the integrals over the element area and along the 

element edges S0 and Sw as,  
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These element matrices are evaluated in closed-form 

ready for numerical simulation. Details of the derivation 

for these element matrices are omitted herein for 

brevity.  

 
5. COMPUTATIONAL PROCEDURE 
The derived finite element equations are nonlinear. 

These nonlinear algebraic equations are solved by 

applying the Newton-Raphson iteration technique [3] by 

first writing the unbalanced values from the set of the 

finite element Equations as,  
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This leads to a set of algebraic equations with the 

incremental unknowns of the element nodal velocity 

components, temperatures, and pressures in the form,    
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Where, 
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The iteration process is terminated if the percentage of 

the overall change compared to the previous iteration is 

less than the specified value.  

 
6.  RESULTS AND DISCUSSION 
The present problem is a square open cavity with the 

left vertical wall is at iso-flux heat source, while the top 

and bottom walls are cooled and heated temperature 

respectively. Obviously for high values of Grashof 

number the errors encountered are appreciable and 

hence it is necessary to perform some grid size testing in 

order to establish a suitable grid size. Grid independent 

solution is ensured by comparing the results of different 

grid meshes for Gr = 10
6
, which was the highest 

Grashof number. The total domain is discretized into 

13948 elements that results in 83688 nodes. In order to 

validate the numerical code, pure natural convection 

with Pr = 0.72 in a square open cavity was solved and 

the average Nusselt numbers is presented in graphically. 

The results were compared with those reported by 

Hinojosa et al. obtained with an extended computational 

domain. In Table-1, a comparison between the average 

Nusselt numbers is presented. The results from the 

present experiment are almost same as Hinojosa et al.   

 

 

 

 

 

 

 

 

Table 1: Comparison of the results for the constant 

surface temperature with Pr = 0.71. 

 

 

Ra 

Nuav 

Present 

work         

 Hinojosa et 

al. (2005) 

10
3
 1.33 1.30 

10
4
 3.42 3.44 

10
5
 7.40 7.44 

10
6 

14.41 14.51 

    

The effect of inclination angle is examined for Φ = 0º, 

15º, 30º & 45º and with aspect ratio A = 1. The 

hydrodynamic and thermal field in the cavity in the 

form of streamlines and isotherms for different Grashof 

numbers are shown in Figures 2 to 7 for different 

angles, different lr and different Pr as representative 

cases. A steady-state pattern of streamlines from Gr of 

10
3
 to 10

6
 with different angles is presented in Figure 2. 

Also the steady-state patterns of isotherms from Gr of 

10
3
 to 10

6
 with different angles are presented in Figure 

3. The streamlines and isotherms are shown for different 

lr and Pr in Figure 4 to 7. For the isotherm, the figures 

show that as the Gr and the inclination angle increases, 

the buoyancy force increases and the thermal boundary 

layers become thinner. For the streamlines, the figures 

show that the fluid enters from the bottom of the 

aperture, circulates in a clockwise direction following 

the shape of the cavity, and leaves toward the upper part 

of the aperture. The streamline patterns is very similar 

for last one Gr and the inclination angles, but the fluid 

moves faster and created vortices for Gr of 10
3
 to 10

5
, 

the streamline patterns is similar but the upper boundary 

layer becomes thinner and faster, the velocity of the air 

flow moving toward the aperture increases, and the area 

that is occupied by the leaving hot fluid decreases 

compared with that of the entering fluid.  

Therefore, we see that as Gr increases, the flow 

gradually becomes convective dominated, the cold fluid 

is entrained right to the left vertical wall where high 

temperature gradients are created, and the discharging 

fluid from the upper part of the cavity occupies smaller 

section of the opening. Isotherms and streamlines show 

that as the inclination angle of the heated wall increases, 

the velocity gradient increases at heated wall, the 

strength of the circulation increases. The variation of the 

average Nusselt number with the Grashof number for 

the iso-flux heat source and lr is shown in Figures 

8,9,10 and 11.Where Nuav increases with increasing of 

Gr and increasing of lr. The heat transfer characteristics 

become lower for lower lr = 0.2 and higher for higher 

for lr = 0.4. At angle 0
0
, The NUav variation for different 

Prandtl numbers while Pr= 0.72, 1 & 7 in figure 10 

shown that average Nusselt number (Nuav) increases 

with increasing of Gr and increasing of Pr. At angle 30
0
, 

the average Nusselt number (Nuav) increases with 

increasing of Gr but decreasing of Pr which is shown in 

figure-11.The heat transfer characteristics become high 

for lower Pr = 0.72 and low for higher for Pr = 7. 
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Figure-2: stream lines with different   Figure-3: Isotherm lines with different    
 Gr and inclination angles when Pr = 0.72        Gr and inclination angles when Pr = 0.72 

 

                

     

         
        

         Figure-4: Stream lines with different Gr&                  Figure-5: Isotherm lines with different Gr&                     
     lr with angles 00 when Pr = 0.72          lr with angles 00 when Pr = 0.72 

 

                

              

               
       
Figure-6: Stream lines with different Gr &   Figure-7: Stream lines with different Gr &   
 Pr with angles 00          Pr with angles 00  
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Fig 8: Variation of the Nuav with the Gr                                              Fig 9. Variation of the Nuav with the Gr  

           for different lr.                         for different angles. 

              
Fig 10: Variation of the Nuav with the Gr for           Fig 11. Variation of the Nuav with the Gr for  

different Pr at 0
0
.                           different Pr at 30

0
 

 
7.  CONCLUSION 
A finite element method for steady-state 

incompressible natural convection flow is presented. 

The finite element equations were derived from the 

governing flow equations that consist of the 

conservation of mass, momentum, and energy 

equations. The derived finite element equations are 

nonlinear requiring an iterative technique solver. The 

Galerkin weighted residual method is applied to solve 

these nonlinear equations for solutions of the nodal 

velocity components, temperatures, and pressures. The 

above example demonstrates the capability of the finite 

element formulation that can provide insight to steady-

state incompressible natural convection flow behaviors.  

 
8.  REFERENCES 
[1] Angirasa, D., Pourquie, M. J., and Nieuwstadt, F. 

T., 1992, “Numerical study of transient and steady 

laminar buoyancy-driven flows and heat transfer in 

a square open cavity”, Numerical Heat Transfer, 

22: 223-239. 

[2] Chan, Y. L. and Tien, C. L., 1985, “A Numerical 

study of two-dimensional laminar natural 

convection in a shallow open cavity”, Int. J. Heat 

Mass Transfer, 28: 603-612.  

[3] Dechaumphai, P., 1995, “Adaptive finite element 

technique for heat transfer problems”, Heat & Mass 

transfer, 17: 87-94.  

[4] Mohamad, A., 1995, “Natural convection in open 

cavities and slots”, Numerical Heat Transfer A, 27: 

705-716.  

[5]  Penot, F., 1982, “Numerical calculation of two-

dimensional natural convection in isothermal open 

cavities”, Numerical Heat Transfer, 5: 421-437.  

[6] Polat, O. and Bilgen, E., 2002, “Laminar natural 

convection in inclined open shallow cavities”, Int. 

J. Therm Sci, 41: 360-368.   

[7] Quere, P. Le, Humphery, J. A., and Sherman, F.S., 

1981, “Numerical calculation of thermally driven 

two-dimensional unsteady laminar flow in cavities 

of rectangular cross section”, Numerical Heat 

Transfer, 4: 249-283.  

[8] Saha G., 2007, “A finite element method for steady 

state natural convection in a square tilt ope cavity”, 

ARPN Journal of Engineering and Applied 

Sciences, 2:41-49. 

 
9.  NOMENCLATURE 

Symbol Meaning Unit 

g gravitational acceleration (ms–2) 

k 
thermal conductivity of the 

fluid 

(m
3
/s) 

L 
hight and width of the 

enclosure 

– 

P pressure – 

P non-dimensional pressure – 

q heat flux – 

Nu Nusselt number  

Pr Prandtl number – 

T Temperature  (K) 

θ dimensional temperature   (ms
-1

) 

U,V 
non-dimensional Velocity 

component  

(ms
-1

) 

Gr Grashof number –  

u,v velocity components – 

x,y Cartesian coordinates (m) 

X,Y 
non-dimensional Cartesian 

coordinates 

(m) 

α thermal diffusivity – 

ρ density of the fluid – 
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with the Gr for different Pr. 

 



 

 

 


